

RESUME ANDREAS SCHARF 1

Andreas Bernhard Scharf

Senior C++/Linux engineer (7+ yrs) focused on correctness and
performance. Owned a certified header-only core library used in
20+ repos; shipped 2×–17× speedups with reproducible
benchmarks and CI perf gates. Strong algorithms background;
most impact in single-threaded hot paths; expanding hands-on multithreading for low-latency.

Robert Bosch GmbH — Research Engineer → SW Developer → Senior SW

Developer → Product Owner (04/2018 – Present)

C++ Engineering & System Architecture (C++11/C++14/C++17 on GCC/Clang)

• Optimized an optional-like type in a certified header-only C++ library via specialized storage → 2×

runtime for trivial types and 5–20% lower memory on embedded targets; rolled out across 10+

compilers.

• Added move semantics to fixed-capacity containers (vector/list/map/tuple) → ~10% runtime gain in

release builds (Google Benchmark) across 10+ customer toolchains

• Built a Docker-based micro-benchmark harness (Python) for GCC/Clang; used Valgrind instruction

counts for GCC/Clang and reproducible CPU-cycle measurements via an internal simulator

toolchain; integrated results into CI to prevent regressions.

• Delivered up to 17× speedups on selected C++ APIs using the benchmark harness by restoring

missing inline qualifiers, refactoring call sites, and adding type-constrained function templates.

• Refactored real-time radar modules (–1,500 LOC, –25% complexity) by redesigning legacy

“iceberg” classes and templates, improving determinism and maintainability in safety-critical code.

• Debugged and stabilized a k-d tree nearest-neighbor implementation used in LiDAR perception;

added targeted edge-case unit tests to prevent regressions.

• Resolved static-analysis findings at scale (constexpr, POD init, safer initialization).

Python Tooling & Data Engineering

• ~40× faster rare-event hunts by building Python pipelines to retrieve/convert/analyze ~1,000 radar

sequences.

• ~33% less refactor time via an automated Python validation toolchain that checks thousands of

signals and gates changes during large C++ refactors.

• ~5% maintenance reduction by scanning 20+ customer repos to identify ~50 unused public APIs and

drive deprecations, shrinking the supported surface area.

• Operated an Azure SQL metadata store and integrated Azure DevOps/ML pipelines for automated

data delivery and schema management.

Product Owner, cross-BU C++ base-library team (Sep 2025–Present — concurrent)

• Co-initiated and secured the consolidation of two parallel C++ base-library efforts; presented the

plan to the architecture council and CTO Techboard, enabling the formation of a ~10-engineer cross-

BU team.

• Authored a 30-page 2026 business plan, defined the three feature streams, and established roadmap,

milestones, and architectural runway.

• Owned customer relations as the single point of contact for requirements, prioritization, and

expectation management.

• Transferred performance benchmarking practices from prior work, ensuring adoption across

feature streams.

E-Mail: scharf.andreas.b@gmail.com
github-account: https://github.com/Schwarf/
Last updated: 12/2025

mailto:scharf.andreas.b@gmail.com
https://github.com/Schwarf/

RESUME ANDREAS SCHARF 2

• Defined epics, user stories, and review cadences; aligned stakeholders on scope, responsibilities,

and quality standards (API, performance, architecture).

• Continued contributing as a hands-on developer, acting as a firefighter across all feature streams to

unblock critical paths.

Leadership and Team Impact

• Drove a customer-centric workflow (without a formal PO role): set up intake/prioritization,

reframed tasks as epics/stories, and delivered initial requests to demonstrate the standard; result:

quicker turnaround and consistent developer–customer contact.

• Established Developer Relations for the base library: single contact for developer/customer issues;

triaged and resolved escalations, turning a frustrated customer into a reference user and reducing

back-and-forth cycles

• Cross-team alignment on labeling workflows (LiDAR/Radar/Camera): initiated and facilitated

workshops to harmonize strategies, reducing handoffs and communication overhead and improving

delivery predictability.

• Internal enablement: delivered intro talks on Python and GoogleTest (gtest) for junior engineers.

• Software Project Lead, ASAP Engineering (11/2017–04/2018): led a 5-engineer team; introduced

agile practices (open comms, team-driven decisions, iterative feedback).

Open-Source contributions

• NetworKit (C++20) — Selected Contributions

▪ Left–Right Planarity Test: Near-linear planarity check for large graphs (merged),

follow-up optimization delivering up to ~100× runtime improvement (merged).

▪ Successive Shortest Path (Min-Cost Flow): Computation of cost-optimal flows under

capacity/supply constraints (merged).

▪ Full PR history available on GitHub.

• Gonum (Go)

▪ Dinic’s Max-Flow algorithm (merged).

▪ Complex Dilogarithm (Li₂): Numerically robust implementation with full test suite

(merged). Added performance and benchmark suite with up to 1000× speedups (merged).

• NetworkX (Python)

▪ Bug fixes: Issue #7645, Issue #7796

Earlier Experience

Software engineer - ITK Engineering GmbH, 05/2015 – 10/2017

• Fixed numerical-kernel issues in client C++ code (Fresnel integrals), restoring correctness under real-

world inputs

• Evaluated real-time charting/plotting performance on constrained customer hardware (C#/C++),

informing tech choices

• Contributed across small projects in C++/C#/Python/Java (tooling and integrations)

Academic Research & Education (List of publications)

Theoretical Physics — KIT (Ph.D., magna cum laude) | KIT (Diplom / M.Sc. equiv., grade 1.1)

Postdoctoral Research (2008–2015) — SUNY Buffalo & University of Würzburg

Large-scale numerical computations and Monte Carlo simulations (Fortran); peer-reviewed publications;

collaboration & supervision

Tools & Languages (applied)

C++17/20 (GCC/Clang), Linux, CMake, GoogleTest, Google Benchmark, Valgrind/Cachegrind, Actions, Python; Go

https://github.com/networkit/networkit/pull/1276
https://github.com/networkit/networkit/pull/1377
https://github.com/networkit/networkit/pull/1349
https://github.com/networkit/networkit/pulls?q=is%3Apr+is%3Amerged+author%3ASchwarf
https://github.com/gonum/gonum/pull/2051
https://github.com/gonum/gonum/pull/2059
https://github.com/gonum/gonum/pull/2062
https://github.com/networkx/networkx/pull/7750
https://github.com/networkx/networkx/issues/7796
https://inspirehep.net/literature?sort=mostrecent&size=25&page=1&q=find%20a%20A.%20Scharf%20and%20d%20%3E%202004%20and%20&subject=Phenomenology-HEP&arxiv_categories=hep-ph

